
Effect of a Coulombic dot-lead coupling on the dynamics of a quantum dot

Florian Elste,1 David R. Reichman,2 and Andrew J. Millis1

1Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA
2Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA

�Received 3 March 2010; revised manuscript received 16 April 2010; published 10 May 2010�

The effect of a Coulombic coupling on the dynamics of a quantum dot hybridized to leads is determined.
The calculation treats the interaction between charge fluctuations on the dot and the dynamically generated
image charge in the leads. A formally exact solution is presented for a dot coupled to a Luttinger liquid and an
approximate solution, equivalent to treating the lead dynamics within a random phase approximation, is given
for a dot coupled to a two- or three-dimensional metallic lead. The leading divergences arising from the
long-ranged Coulomb interaction are found to cancel, so that in the two- and three-dimensional cases the
quantum-dot dynamics is equivalent to that obtained by neglecting both the dot-lead Coulomb coupling and the
Coulomb renormalization of the lead electrons, while in the one-dimensional case the dot-lead mixing is
enhanced relative to the noninteracting case. Explicit results are given for the short-time dynamics.
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I. INTRODUCTION

The quantum dot, a system comprised of a small number
of spatially localized levels coupled to one or more metallic
leads, is one of the paradigmatic problems of condensed mat-
ter theory and is highly relevant to nanoscience. Theoretical
studies of quantum dots typically involve two competing ef-
fects: local interactions, which constrain the possible elec-
tronic configurations of the quantum dot, and hybridization
with the leads, which mixes different dot eigenstates. In this
paper we study a third crucial and physically relevant inter-
action: the Coulomb coupling between the charge on the dot
and the charge on the leads. This interaction is most impor-
tant in the case of a dot weakly coupled to leads, because in
this case the physical situation is of infrequent transitions
between states of well defined integer charge.

Short-ranged dot-lead interactions play a crucial role in
x-ray absorption lineshapes1 and the Kondo effect2 and were
studied using bosonization methods by Schotte and Schotte.3

But the general issue of dot-lead interactions received rela-
tively little attention in the recent nanoscience literature, al-
though Gefen and co-workers have noted that introducing an
additional Coulombically coupled lead into a standard
quantum-dot problem may lead to a non-Fermi-liquid
state.4–7

The interaction we wish to treat may be written as

HCoul = nd�
a
� dDr�a�r�

e2

�r
. �1�

Here we denote by nd the operator giving the number of
electrons on the dot and by �a�r� the operator giving the
number density of electrons at position r relative to the im-
purity in channel a of a D-dimensional lead. � is a back-
ground dielectric constant. Consistency requires that a theory
involving HCoul involves also considerations of the Coulomb
effects on the density-density response of the lead electrons.
In the case of a one-dimensional lead, the standard tech-
niques of bosonization8 allow us to include both effects, ex-
pressing the low-energy electronic physics entirely in terms
of density and spin fluctuation operators and enabling a com-

plete and formally exact theory. We find that the interaction
has �as expected from previous results obtained for the x-ray
edge problem�1,3 a profound effect on the dynamics of the
impurity, qualitatively changing the power laws describing
the time evolution. We also present an extension to the case
of higher-dimensional leads. We employ a canonical trans-
formation first introduced by Bohm and Pines,9 which can
only be carried out approximately but which captures the
essential physics of screening. In this case we find that the
Coulombic renormalizations of the dot-lead coupling and the
lead-electron dynamics cancel, so the dot-lead problem can
be treated within an essentially noninteracting electron ap-
proximation.

The physics of local defects in Coulomb Luttinger liquids
has received previous attention. Fabrizio et al.10 and Maurey
and Giamarchi11 have considered the effects of one or more
impurities �described as a short-ranged potential scatterer� on
a Luttinger liquid with Coulomb interaction. Liu12 has inves-
tigated the screening of a test charge, however, in a model
with only short-ranged electron-electron interactions. None
of these authors treated an impurity with dynamical charge
fluctuations or a Coulombic dot-lead coupling. We also note
that Lerner et al.13 have studied a model related to the spe-
cific model we consider, namely, an impurity adjacent to a
Luttinger liquid. They did not consider the Coulombic cou-
pling but did include charge fluctuations and found a non-
trivial structure of the transmission coefficient.

The effect of a dot-lead interaction on the population of a
quantum dot has been studied by Goldstein et al.14 using
density matrix renormalization group and classical Monte
Carlo simulations. Particular attention was paid to the
screened case where the long-range part of the Coulomb in-
teraction can be neglected. The electronic tunneling was in-
vestigated using a Coulomb-gas analysis, which allows for
an expansion to all orders in the dot-lead hybridization. The
enhancement of the electronic tunneling at the resonance
found in Ref. 14 has a similar physical interpretation as the
results presented in this paper.

The paper is organized as follows. In Sec. II we introduce
the model. Section III presents the analysis of the one-
dimensional problem, including the explicit forms appropri-
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ate to a dot with Luttinger-liquid leads. Section IV presents
the extension of the results to the case of two- and three-
dimensional leads. An application of the results to the short-
time impurity dynamics is presented in Sec. V. We summa-
rize our results in Sec. VI.

II. MODEL

We consider a quantum dot that is hybridized to one or
more leads, but neglect dot-lead potential scattering and do
not consider the case where the dot breaks the lead into two
semi-infinite leads connected only by hybridization through
the dot. These simplifications allow us to focus on the
consequences of the Coulombic coupling HCoul, Eq. �1�.
The effects we have neglected introduce additional
complications10–13,15 whose interplay with the Coulombic
coupling will be treated in a future paper.

The quantum-dot problem is described by a Hamiltonian
of the general form

H = Hlead + Hdot + HCoul + Hmix �2�

with HCoul given by Eq. �1�. The quantum-dot Hamiltonian
Hdot may be written as

Hdot = �dnd +
U

2
nd�nd − 1� + . . . �3�

Here U is the dot charging energy and nd=���d��
† d�� is the

operator giving the total number of electrons on the dot. The
operator d��

† creates an electron with energy �d and spin � in
dot state �. The ellipsis denotes other on-dot interactions, for
example, the Hund’s coupling J.

We label the lead orbitals by a and write the lead Hamil-
tonian as

Hlead = �
ak�

�k
acak�

† cak� +
1

2
� dDrdDr�

e2

��r − r��
��r���r�� + . . . ,

�4�

where cak�
† creates an electron with momentum k and spin �

in state a, ��r� is the operator giving the charge density at
position r, � is a background dielectric constant and the el-
lipsis denotes any additional short-ranged interactions. It is
important that the same long-ranged interaction appears in
Eqs. �1� and �4�.

The dot-lead hybridization is given by

Hmix = �
ak��

�T�
ak�d��

† cak� + T�
ak��

cak�
† d��� . �5�

The standard quantum-dot physics arises because
�Hmix,Hdot��0 so that the interaction-induced constraints on
the dot occupancy interact nontrivially with the hybridiza-
tion, giving rise, for example, to the Kondo effect. The phys-
ics we wish to investigate arises because �Hmix,HCoul��0 so
that a hybridization event changes the local charge, giving
rise to a long-ranged electric field to which the lead electrons
react.

III. ONE DIMENSION

If the leads are one-dimensional and the electron disper-
sion is linear, then the low-energy physics of Hlead may be
expressed in terms of bosons8,16 and the results used to solve
the model exactly. We illustrate the method here for a single
lead with multiple channels; the generalization to multiple
leads is straightforward but involves more complicated alge-
bra.

We imagine a system with linear dimension L �which we
will later take to infinity� and periodic boundary conditions
so the allowed values of q are 2�n /L with n�0 an integer.
We combine spin and orbital quantum numbers into a super-
index �=1, . . . ,M. The physics is conveniently represented
in terms of right �	=+� and left �	=−� moving particle-hole
pairs ��


�q�, which obey the commutation relation
���


�q� ,��

�−q���= 
�qq�qL /2�.17 These can be recombined

into boson operators,

���q� = −
i

q
���

+�q� + ��
−�q�� , �6�

��q� = − ���
+�q� − ��

−�q�� , �7�

which obey the volume commutation relation

����q�,���− q��� = i
L

�
�����qq�. �8�

The total particle density in lead � is given by

���q� = iq���q� . �9�

The lead-electron creation operator �	� may also be ex-
pressed in terms of bosons as

�	��x� =
1

�2��
ei	kFxei��/L��qeiqx�	���q�−�1/iq���q��. �10�

Here we have omitted the Klein factors that carry the Fermi
statistics and have introduced a small positive infinitesimal
factor � arising from the correct normal ordering of the
operators.8

A key result of the theory of one-dimensional conductors
is that in the absence of Umklapp scattering the low-energy
physics of the leads may be described by new boson opera-
tors �b, b related by a linear transformation to the operators
��, � and also obeying the canonical commutation rela-
tions Eq. �8�. In terms of the new operators the lead Hamil-
tonian becomes

Hlead = �
b=1,. . .,M

�
q

�

2L
vb�q�	Kb�q�b�− q�b�q�

+
q2

Kb�q�
�b�− q��b�q�
 �11�

with velocity parameters vb and interaction parameters Kb
determined by the bare velocities and interactions of the lead
eigenstates.

In the most general case the transformation relating the
�b, b to the ��, � is complicated; in particular the equa-
tions for �b and b each may involve both �� and � and
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the final b combinations need not have a simple interpreta-
tion in terms of the original densities ��

†��. However in the
most relevant case, where all of the channels in a given lead
have the same bare velocity and the interactions conserve the
total lead density, then one of the channels �which we take to
be b=1 for definiteness� is �up to an overall factor� the total
charge density and is given by

�b=1�q� =
1

�M
�
�

���q� , �12�

b=1�q� =
1

�M
�
�

��q� . �13�

Conversely, for any of the original indices � we have

���q� =
1

�M
�b=1�q� + . . . , �14�

��q� =
1

�M
b=1�q� + . . . , �15�

with the ellipses representing the other operators �all com-
muting with �b=1, b=1� needed to make up the full operator.
In particular, the electron annihilation operator assumes the
form8

�	��x� = ei��/�ML��qeiqx�	�1�q�−�1/iq�b=1�q���	�
rest�x� �16�

with

�	�
rest�x� =

ei	kFx

�2��
ei��/�ML��b=2

M �qeiqx�	C�b�b�q�−�1/iq�D�bb�q��.

�17�

with C and D the transformation coefficients, which diago-
nalize the Luttinger-liquid Hamiltonian.

Comparison to Eq. �6� shows that the total charge density
� is related to �b=1 by

��q� = �Miq�1�q� . �18�

Thus writing

1

�x�
=

1

L
�

q

eiqxWq, �19�

Wq = ln�1 +
�2

q2 � �20�

with � the inverse of a short-distance cutoff we find that the
long-ranged Coulomb interaction between conduction elec-
trons in the Luttinger liquid is

Hint =
M�vFVc

2L
�

q

q2�1�q��1�− q�Wq. �21�

Here we introduced a dimensionless measure of the Cou-
lomb interaction strength

Vc =
e2

�vF�
. �22�

In a general Coulomb-coupled Luttinger liquid we have also
a short-ranged part of the interaction, parametrized by di-
mensionless constants g1,2 such that if the Coulomb interac-
tion were negligible we would have

K1,SR�q� =�1 + g1 − g2

1 + g1 + g2
, �23�

v1,SR�q� = vFK1,SR�q��1 + g1 + g2� . �24�

Including the Coulomb interaction gives

K1�q� =
K1,SR�q�

�1 +
MVcWq

1+g1+g2

, �25�

v1�q� = v1,SR�q��1 +
MVcWq

1 + g1 + g2
. �26�

The dot-lead interaction, Eq. �1�, is transcribed into the
new representation as

HCoul =
�vF

�ML
�

q

iq�1�q�MVcWqnd. �27�

The linear coupling between the dot occupancy nd and the
lead density �1 in Eq. �27� may be removed by a canonical
transformation, which shifts �1�q�→�1�q�−

nd

iq�M
Zq with

Zq =
vFK1�q�

v1�q�
MVcWq =

MVcWq

1 + g1 + g2 + MVcWq
. �28�

In the shifted Hamiltonian the dot-lead interaction is
eliminated, Hlead retains the form of Eq. �11� and the dot
energy �d and the local interaction U are decreased by � and
2�, respectively, with the polaron shift � given by

� =
vF

2M

�

L �
q

v1�q�
vFK1�q�

Zq
2 =

vF

2M

�

L �
q

�MVcWq�2

1 + g1 + g2 + MVcWq
.

�29�

Here the polaron shift gives the static interaction between
the dot charge and the image charge it induces in the lead.

The canonical transformation acts on an operator O by
O→eiSOe−iS. From Eq. �8� we see that

S = − nd
�

�ML
�

q

1�− q�
Zq

iq
. �30�

Under the canonical transformation the fermion operator
�	��x�, Eq. �16�, becomes

�	��x� → e−i	nd��/ML��q�eiqx/iq�Zq�	��x� �31�

while the operator d���

† becomes

d���

† → d���

† e−i��/�ML��q1�−q�Zq/iq. �32�

The factor multiplying � is purely imaginary. In this paper
we will only need to consider combinations d†��†d for
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which this factor and a similar one coming from the commu-
tator needed to combine the factor multiplying d with the
boson operators in � cancel. We may thus write the trans-
formed operator appearing in the dot-lead hybridization term
as

eiSd���

† �	��x�e−iS = d���

† �	�
rest�x�

� ei��/�ML��q�eiqx	�1�q�−��eiqx−Zq�/iq�1�q��.

�33�

Thus in a dot Coulombically coupled to a one-dimensional
conductor the explicit Coulombic dot-lead coupling may be
eliminated by a canonical transformation. The physics asso-
ciated with the Coulomb interaction is expressed via a renor-
malization of the dot-lead hybridization.

As will be seen below, for the evaluation of physical
quantities the crucial objects are lead-operator expectation
values of the form

F�x,t� = �	��x,t��	�
† �0,0�� , �34�

where �	� is the right-hand side of Eq. �33� with the d†

operator removed.
For later use we present explicit formulas for the two

most interesting cases: a metallic nanotube lead and a single-
channel Luttinger liquid with SU�2� spin rotation invariance,
specializing further to the case of a local dot-lead hybridiza-
tion �x=0�. In both of these cases the interactions and veloci-
ties for the noncharge channels may be approximated by the
free-fermion values of vb=vF and Kb=1. It is convenient to
multiply and divide by the free-fermion correlator F0, which
is proportional to 1 / t at long times and has an appropriate
short-time cutoff. We obtain

F�t� = F0�t�e��t�, �35�

where

��t� =
2�

ML
�
q�0

1 − e−i�q
0t − Bq�1 − e−i�qt�

2�q�
�36�

and

�q = v1�q��q�, �q
0 = vF�q� , �37�

Bq =
K1�q� + 1

K1�q� �1 − Zq�2

2
. �38�

In these formulas the Luttinger-liquid correlations are ex-
pressed by the factors K1�q� and �q /�q

0 while the effect of
the dot-lead interaction is carried by Zq.

The real and imaginary parts of � are plotted in Fig. 1 for
parameters appropriate to a nanotube �see below�. In the ab-
sence of the Coulombic dot-lead interaction �Zq=0�, one
finds Re ��t��0 reflecting the suppression of the electronic
tunneling by interaction effects in one dimension. However,
Eq. �38� shows that the Coulombic dot-lead interaction acts
to reduce the magnitude of the negative term in �. We see
from Fig. 1 that the dot-lead coupling in fact changes the
sign of Re ��t�, therefore enhancing the dot-lead hybridiza-
tion above the noninteracting value. The long-time

asymptotic behavior of Re ��t� is log�vFt /�� /M in the
screened case �Zq�0�.

A metallic nanotube has two conducting channels and two
spin states, so M =4. For a metallic nanotube with �=1 and
bare Fermi velocity vF=5.3 eV Å, one has Vc�0.9. We
also remark that the parameter � in Eq. �20� is on the order
of the inverse of the tube diameter, which is much greater
than the basic lattice constant. Further, in metallic nanotubes
the short-ranged interactions �and indeed all interaction ef-
fects except the long-ranged Coulomb interaction� are be-
lieved to be negligible18 so that Kc,SR=1 and vc,SR=vF and

K1
nanotube�q� =� 1

1 + MVcWq
, �39�

v1
nanotube�q� = vF

�1 + MVcWq. �40�

Finally, evaluating the polaron shift we find �choosing the
cut-off � to be the inverse of the nanotube diameter dnanotube�

�nanotube�eV� �
5.6

dnanotube�Å�
. �41�

For a typical nanotube diameter of 12 Å, one obtains
�nanotube�0.5 eV.

IV. LEAD DIMENSION GREATER THAN 1

The treatment of the previous section relied on a particu-
lar feature of one- dimensional �non-nested� systems,
namely, that the electronic degrees of freedom could be en-
tirely eliminated in favor of a set of effectively noninteract-
ing boson excitations, one of which is the density. In dimen-
sion higher than one a complete elimination of electronic
degrees of freedom is not possible but a separation of density
fluctuation and fermionic variables may be effected via a
canonical transformation method introduced by Bohm and
Pines.9 The canonical transformation cannot be carried out

0 5 10 15
t (η/v

F
)

-6

-4

-2

0

R
e

φ(
t)

,
Im

φ(
t)

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Re φ(t)
Im φ(t)
Re φ(t) for Z

q
=0

Im φ(t) for Z
q
=0

FIG. 1. �Color online� Real and imaginary part of the renormal-
ization factor ��t�, Eq. �36�, for a Luttinger liquid with M =4 chan-
nels and Coulomb cutoff �tube diameter� �=10 /� plotted against
time �in units of bare cut-off � /vF�. Solid blue line: Re ��t� com-
puted from exact expression with dimensionless coupling Vc�0.9.
Dashed green line: Re ��t� computed from Eq. �36� but with
screening factor Zq set to zero. Dotted red line: Im ��t� computed
from exact expression with Vc�0.9. Dash-dotted purple line:
Im ��t� computed with screening factor Zq set to zero.
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exactly but an approximate implementation can be per-
formed, which has the same level of accuracy as the familiar
random phase approximation �RPA�. This approximate
implementation leads to a theory, which is very similar in
form to the one-dimensional theory derived above, but of
course expressing the characteristic physics of higher-
dimensional systems.

The analysis proceeds from the Hamiltonian in Eq. �2�.
Following Bohm and Pines9 we introduce canonically conju-
gate boson fields Pq and Qq obeying �in D spatial dimen-
sions�

�Qq,Pq�� = i
LD

�D�qq�. �42�

To begin we consider states ��� which are a direct product of
fermion and boson eigenstates and restrict attention to states
satisfying

Pq��� = 0. �43�

We then may shift the density operators of all lead states a,

�a�q� → �a
shift�q� � �a�q� +

Pq

N�Vq

, �44�

where N denotes the number of lead states and Vq denotes
the Fourier transform of the Coulomb interaction
4�e2 / �q2L3� in D=3 and 2e2� / ��q�L2� in D=2 dimensions.
Provided that we consider only wave functions ��� which
obey the subsidiary condition Eq. �43� the Hamiltonian writ-
ten in terms of �shift is equivalent to the original Hamiltonian.

Bohm and Pines now introduce a canonical transforma-
tion to shift Pq by −�Vq�a�a�q�. This transformation is ef-
fected by H→eiSHe−iS with

S =
�D

LD �
aq

�VqQq�a�q� . �45�

After this transformation, the subsidiary condition for the
wave functions becomes �Pq−�Vq�a�a�q�����=0, which al-
lows us to replace �a�a�q� by Pq /�Vq.

Under the transformation, Hdot remains invariant while
Hmix becomes

Hmix → �
ak�

�Te−i��D/LD��q�VqQqd�
†cak� + h.c.� �46�

and the excitonic dot-lead coupling HCoul is

HCoul = �
q

�VqPqnd. �47�

Similarly, the lead-electron Green function Glead�r , t�
= ca��r , t�ca�

† �0,0�� with ca��r , t�=�dDqeiq·rcaq��t� becomes

Glead�r,t� → Ḡlead�r,t�

�e−i��D/LD��qe−iq·r�VqQq�t�ei��D/LD��q�VqQq�t=0��
�48�

with Ḡlead computed with the transformed Hamiltonian.
Bohm and Pines show that the renormalization implied by

Eq. �48� is in essence the RPA reduction in the electronic
spectral weight.

These are exact results. As far as is known, the transfor-
mation of the remainder of the lead Hamiltonian can only be
carried out approximately, for example, by expanding the
exponentials to obtain a series of multiple commutators.
Keeping the exact first-order commutator and approximating
the second-order term by its vacuum expectation value, n0,
Bohm and Pines obtain

Hlead � �
ak�

�kcak�
† cak� − �

aq

�VqQqq · jq

+
1

2�
q

�PqP−q + �p
2�q�QqQ−q� �49�

with the electron current operator jq given by

iq · jq =
�D

LD �
k�

��k+q − �k�cak�
† ca�k+q�� �50�

and the plasma frequency �p defined in terms of the electron
stress-energy tensor by

�p
2�q� =

�2D

L2D Vq�
k�

n0��k+q + �k−q − 2�k� . �51�

The coupling between Qq and the divergence of the fer-
mion current, and the terms dropped in the approximate ca-
nonical transformation are to be treated perturbatively. Ne-
glecting them is equivalent to treating the plasmon as an
undamped boson and retaining the term in the electron self-
energy, which comes from the electron-plasmon coupling.
Adding the iQq�q · jq� term in leading order of perturbation
theory restores the plasmon damping found within the RPA
while the additional neglected terms give beyond-RPA phys-
ics.

These transformations have reduced the problem to one
analogous to that solved in the previous section. We now
shift the field Pq by −�Vqnd to remove the dot-lead coupling.
The canonical transformation O→eiSOe−iS with S
= �D

LD �q
�VqQqnd precisely cancels the Coulomb-induced

renormalization of the lead fermion operator, so that in the
transformed variables the dot-lead hybridization takes the
unrenormalized form

Hmix → �
ak�

�Td�
†cak� + h.c.� �52�

Thus in dimensions greater than 1 and within the RPA ap-
proximation the Coulombic dot-lead coupling compensates
for the Coulomb-induced reduction in electronic spectral
weight, so that Coulombic effects drop out of the tunneling
problem �except for the “image charge” or polaron-shift re-
duction in the dot energy and screening of the dot interac-
tion�. The tunneling effects may be calculated using free
electrons �that is to say, computing the local lead correlators
without including the RPA or GW self energy�.
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V. QUANTUM-DOT DYNAMICS

The previous sections have shown how to reduce the Cou-
lombically coupled dot-lead problem to an expansion in
powers of the dot-lead hybridization, which is appropriately
renormalized by bosons. The lowest-order term in this ex-
pansion implies a master-equation approach to the dot dy-
namics, which we use to illustrate our formalism.

For simplicity, we consider a quantum dot with a single
�nondegenerate� level described by a density matrix which is
diagonal in the occupancy basis and is written as

�d = P0�0�0� + P1�1�1� . �53�

Here P0 and P1 denote the occupation probabilities of the
empty state �0� and the singly charged state �1�. Inserting Eq.
�53� into the von Neumann equation of motion for the den-
sity matrix, expanding to leading nontrivial order in the hy-
bridization and using P1=1− P0 yields the master equation

Ṗ0�t� = �
0

t

dt��R1→0�t − t��

− P0�t���R0→1�t − t�� + R1→0�t − t���� �54�

with the transition probabilities

R0→1�t� = 2�T�2Re�F�t�e−i�dt� , �55�

R1→0�t� = 2�T�2Re�F�t�ei�dt� , �56�

where F�t� is defined in Eq. �34�.
We note in passing that because here we restrict attention

to thermal equilibrium, the long-time limit of the populations
is a steady state determined by the detailed-balance condi-
tion, i.e., P0 �as a function of �d /T� is a Fermi distribution in
the limit t→�. Of course, at zero temperature T=0, orthogo-
nality effects may cause the system not to equilibrate.

We first examine these equations in the Markovian limit
in which the dot dynamics are slow enough and the kernels F
decays fast enough that P0�t� may be treated as a constant
and extracted from the integral in Eq. �54�. This yields

Ṗ0�t� = R1→0 − P0�t��R0→1 + R1→0� , �57�

where

R0→1��d� = 2�T�2Re	�
0

�

d�F���e−i�d�
 �58�

and R1→0��d�=R0→1�−�d� are the corresponding Golden-
Rule transition rates.

To obtain an idea of the effects of screening we approxi-
mate the logarithmic functions �q and K�q� by constants �
and K. The integrals may then be performed analytically and
we find at zero temperature

F�t� � ���/v
it
�Y

�59�

for times t�� /v with

Y = 1 −
1

M
�1 −

K + K3

2
� , �60�

� = K�K+K3�/2M , �61�

if the Coulombic dot-lead interaction is included, and

Y = 1 +
��K − 1

�K�2

2M
, �62�

� = K�K+K−1�/2M , �63�

if not.
Because for repulsive interactions 0�K�1 we see that in

the presence of Coulombic dot-lead coupling we have Y
�1, whereas if the coupling is neglected we have Y �1.

The rates are then determined as

R0→1��d� =
2�T2

v/� � ��d�
v/��

Y−1���− �d�
��Y�

. �64�

Equation �64� is of the form of a basic tunneling rate,

1

�0
=

2�T2

v/�
, �65�

times a factor expressing the effect of correlations. We see
that if the Coulombic dot-lead coupling is neglected, the in-
teractions suppress the tunneling rate, whereas in the pres-
ence of Coulombic dot-lead coupling the relaxation rate is
enhanced. In the symmetric case �d=0 the Markov rate van-
ishes if the coupling is neglected but diverges if is retained.
The steady state of the system obtained from the master
equation, Eq. �57�, depends on the value of Y. In the most
interesting case, �d=0, it is known that although the Markov
rate vanishes for Y �1, for Y �2 it remains the case that as
t→� the occupancy P0�t� tends to the thermal-equilibrium
value, P0�t�→1 /2, while for Y �2 the system does not
equilibrate at zero temperature.19 In the nanotube case of
interest here the effective exponent K�q� vanishes as q→0 so
that at sufficiently long scales the model without Coulombic
dot-lead coupling would fail to equilibrate; however because
the increase is only logarithmic, for reasonable nanotube pa-
rameters the effective exponent would only become greater
than 2 for q��.

Figure 2 presents the time evolution of P0�t� obtained by
solving the master equation, Eq. �54�, for a dot coupled to a
nanotube with and without the dot-lead Coulombic coupling.
We have considered the particle-hole symmetric case �d=0
for which the equilibrium value is P�0�=1 /2 and have begun
the simulation in a nonequilibrium initial condition. The
strong enhancement of relaxation by the Coulombic dot-lead
coupling is evident.

VI. CONCLUSIONS

In summary, we have studied the effect of a Coulombic
dot-lead coupling on the dynamics of a quantum dot. This
coupling is always present, but its effects seem not hereto-
fore to have been examined. We find that it has an important
effect on the dot-lead dynamics. Two cases have been con-
sidered: a dot coupled to a Luttinger liquid and a dot coupled
to two- or three-dimensional metallic leads. The effects are
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particularly profound for one-dimensional leads. It is well-
known from previous work that in the absence of the Cou-
lombic dot-lead coupling the Luttinger-liquid correlations of
a one-dimensional lead strongly reduce the dot-lead hybrid-
ization, leading �at low enough scales and for strong enough
interactions� to a complete suppression of tunneling and fail-
ure of the system to equilibrate at T=0. The dot-lead Cou-
lomb interaction is shown to overcompensate for this effect,
leading to a divergence in the dot-lead hybridization.

The enhancement of the electronic tunneling due to the
Coulombic dot-lead interaction has the following qualitative
interpretation. The suppression in the usual case comes be-
cause when adding a charge one has to push the other
charges in the Luttinger liquid aside, while the presence of
the screening interaction implies that other charges need not
be pushed away because a screening cloud has to be formed.

We presented estimates for parameters appropriate to a
carbon nanotube, which is one of the most widely used one-
dimensional leads. We also presented explicit formulas
which could be used for more detailed numerical simulations
along the lines of Refs. 20 and 21. For three-dimensional
leads, the effects are found to be less dramatic, but still sig-
nificant: the consequence of the Coulombic dot-lead cou-
pling is that the Coulombic renormalizations drop out of the
problem, so that the dot conductance should be studied using
lead Green functions unrenormalized by the RPA or GW
corrections to the electron effective mass and scattering.

Our results rely on several approximations. The most cru-
cial is that density fluctuations in the leads can be repre-
sented as noninteracting bosons. The standard results of
Luttinger-liquid theory8 justify this approximation for the
case of one-dimensional leads �at least in the universal low-
energy limit� while for the case of higher-dimensional leads
our approximations are at the same level as the random
phase approximation.

Our paper leaves several avenues for future research. Our
explicit results are perturbative in the dot-lead hybridization.
A numerical or analytical treatment to all orders, leading in
particular to an expression for the linear response I−V curve,
would be very valuable. An extension of the work to the
nonequilibrium case of nonzero bias voltage is also impor-
tant.
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FIG. 2. �Color online� Time evolution of the occupation prob-
ability P0�t� for the symmetric case, �d=0, with initial values
P0�0�=0.51 and P1�0�=0.49. Solid line �blue online�: P0�t� com-
puted from Eq. �54� with dimensionless coupling Vc�0.9. Dashed
line �green online�: P0�t� computed from Eq. �54� but with screen-
ing factor Zq set to zero. We assume a tunneling amplitude T
=0.1vF /� �corresponding to a bare tunneling time �0=16� /vF� and
the same parameters as chosen in Fig. 1.
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